“模型”训练个中文版ChatGPT没那么难:不用A100,开源Alpaca-LoRA+RTX 4090就能搞定

2023-03-26 13:05:14来源:机器之心Pro

今天,很高兴为大家分享来自机器之心Pro的训练个中文版ChatGPT没那么难:不用A100,开源Alpaca-LoRA+RTX 4090就能搞定,如果您对训练个中文版ChatGPT没那么难:不用A100,开源Alpaca-LoRA+RTX 4090就能搞定感兴趣,请往下看。

Alpaca-LoRA 将微调类 ChatGPT 模型的算力需求降到了消费级,训练个自己的中文对话模型真就没那么难了。

2023 年,聊天机器人领域似乎只剩下两个阵营:「OpenAI 的 ChatGPT」和「其他」。

ChatGPT 功能强大,但 OpenAI 几乎不可能将其开源。「其他」阵营表现欠佳,但不少人都在做开源方面的努力,比如前段时间 Meta 开源的 LLaMA。

LLaMA 是一系列模型的总称,参数量从 70 亿到 650 亿不等,其中,130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过参数量达 1750 亿的 GPT-3。不过,该模型并没有经过指令微调(instruct tuning),因此生成效果较差。

为了提高模型性能,来自斯坦福的研究者帮助其完成了指令微调的工作,训练了一个名为 Alpaca(羊驼)的 70 亿参数新模型(基于 LLaMA 7B)。具体来说,他们让 OpenAI 的 text-davinci-003 模型以 self-instruct 方式生成 52K 指令遵循(instruction-following)样本,以此作为 Alpaca 的训练数据。实验结果表明,Alpaca 的很多行为都与 text-davinci-003 类似。也就是说,只有 7B 参数的轻量级模型 Alpaca 性能可媲美 GPT-3.5 这样的超大规模语言模型。

对于普通研究者来说,这是一种切实可行的廉价微调方式,不过需要的运算量仍然较大(作者表示他们在 8 个 80GB A100 上微调了 3 个小时)。而且,Alpaca 的种子任务都是英语,收集的数据也都是英文,因此训练出来的模型未对中文优化。

为了进一步降低微调成本,另一位来自斯坦福的研究者 ——Eric J. Wang 使用 LoRA(low-rank adaptation)技术复现了 Alpaca 的结果。具体来说,Eric J. Wang 使用一块 RTX 4090 显卡,只用 5 个小时就训练了一个和 Alpaca 水平相当的模型,将这类模型对算力的需求降到了消费级。而且,该模型可以在树莓派上运行(用于研究)。

LoRA 的技术原理。LoRA 的思想是在原始 PLM 旁边增加一个旁路,做一个降维再升维的操作,来模拟所谓的 intrinsic rank。训练的时候固定 PLM 的参数,只训练降维矩阵 A 与升维矩阵 B。而模型的输入输出维度不变,输出时将 BA 与 PLM 的参数叠加。用随机高斯分布初始化 A,用 0 矩阵初始化 B,保证训练的开始此旁路矩阵依然是 0 矩阵(引自:https://finisky.github.io/lora/)。LoRA 的最大优势是速度更快,使用的内存更少,因此可以在消费级硬件上运行。

Eric J. Wang 发布的 Alpaca-LoRA 项目。

项目地址:https://github.com/tloen/alpaca-lora

对于想要训练自己的类 ChatGPT 模型(包括中文版类 ChatGPT)但又没有顶级算力资源配置的研究者来说,这无疑是一大惊喜。因此,在 Alpaca-LoRA 项目问世后,围绕该项目的教程和训练成果不断涌现,本文将介绍其中的几个。

如何使用 Alpaca-LoRA 微调 LLaMA

在 Alpaca-LoRA 项目中,作者提到,为了廉价高效地进行微调,他们使用了 Hugging Face 的 PEFT。PEFT 是一个库(LoRA 是其支持的技术之一),可以让你使用各种基于 Transformer 的语言模型并使用 LoRA 对其进行微调。好处在于,它允许你在一般的硬件上廉价而有效地微调模型,并有较小的(也许是可组合的)输出。

在近期的一篇博客中,几位研究者介绍了如何使用 Alpaca-LoRA 来微调 LLaMA。

使用 Alpaca-LoRA 之前,需要具备一些先决条件。首先是 GPU 的选择,得益于 LoRA,现在你可以在 NVIDIA T4 这样低规格 GPU 或 4090 消费级 GPU 上完成微调;此外,你还需要申请 LLaMA 权重,因为其权重并不对外公开。

先决条件具备了,接下来就是如何使用 Alpaca-LoRA。首选你需要克隆 Alpaca-LoRA 存储库,代码如下:

git clone https://github.com/daanelson/alpaca-loracd alpaca-lora

其次,获取 LLaMA 权重。将下载到的权重值存储到名为 unconverted-weights 文件夹里,文件夹层次结构就像下面这样:

unconverted-weights├── 7B│ ├── checklist.chk│ ├── consolidated.00.pth│ └── params.json├── tokenizer.model└── tokenizer_checklist.chk

权重存储好后,接着使用以下命令将 PyTorch checkpoint 的权重转换为 transformer 兼容的格式:

cog run python -m transformers.models.llama.convert_llama_weights_to_hf \--input_dir unconverted-weights \--model_size 7B \--output_dir weights

得到最终的目录结构应该是这样的:

weights├── llama-7b└── tokenizermdki

处理好上述两步,来到第三步,安装 Cog:

sudo curl -o /usr/local/bin/cog -L "https://github.com/replicate/cog/releases/latest/download/cog_$(uname -s)_$(uname -m)"sudo chmod +x /usr/local/bin/cog

第四步来到微调模型,默认情况下,微调脚本上配置的 GPU 功能较弱,但如果你有性能更好的 GPU,则可以在 finetune.py 中将 MICRO_BATCH_SIZE 增加到 32 或 64。此外,如果你有指令调优数据集,则可以在 finetune.py 中编辑 DATA_PATH 以指向自己的数据集。需要注意的是这一项操作应该确保数据格式与 alpaca_data_cleaned.json 相同。接下来运行微调脚本:

cog run python finetune.py

微调过程在 40GB A100 GPU 上花费 3.5 小时,对于处理能力较低的 GPU 则需要更多时间。

最后一步用 Cog 运行模型:

$ cog predict -i prompt="Tell me something about alpacas."Alpacas are domesticated animals from South America. They are closely related to llamas and guanacos and have a long, dense, woolly fleece that is used to make textiles. They are herd animals and live in small groups in the Andes mountains. They have a wide variety of sounds, including whistles, snorts, and barks. They are intelligent and social animals and can be trained to perform certain tasks.

教程作者表示,在完成以上步骤之后,大家可以继续尝试各种玩法,包括但不限于:

带上你自己的数据集,微调你自己的 LoRA,比如微调 LLaMA,让它像动漫角色一样说话。参见:https://replicate.com/blog/fine-tune-llama-to-speak-like-homer-simpson

将模型部署到云平台上;

结合其他 LoRA,比如 Stable Diffusion LoRA,把这些都用到图像领域;

使用 Alpaca 数据集(或其他数据集)微调更大的 LLaMA 模型,并查看它们的表现。这应该可以通过 PEFT 和 LoRA 实现,尽管它需要更大的 GPU。

Alpaca-LoRA 的衍生项目

尽管 Alpaca 性能可以媲美 GPT 3.5,但其种子任务都是英语,收集的数据也都是英文,因此训练出来的模型对中文并不友好。为了提升对话模型在中文上的效果,我们看看都有哪些比较好的项目。

首先是来自华中师范大学、商汤科技等机构开源的中文语言模型骆驼 (Luotuo),该项目基于 LLaMA、Stanford Alpaca、Alpaca LoRA、Japanese-Alpaca-LoRA 等完成,单卡就能完成训练部署。有意思的是,他们之所以将模型名字命名为骆驼,是因为 LLaMA(大羊驼)和 alpaca(羊驼)都属于偶蹄目 - 骆驼科。这样看来,起这个名字也在意料之中。

这个模型是在 Meta 开源的 LLaMA 基础上,参考 Alpaca 和 Alpaca-LoRA 两个项目,对中文进行了训练。

项目地址:https://github.com/LC1332/Chinese-alpaca-lora

目前该项目释放了两个模型 luotuo-lora-7b-0.1、luotuo-lora-7b-0.3,还有一个模型在计划中:

下面是效果展示:

不过 luotuo-lora-7b-0.1(0.1)、luotuo-lora-7b-0.3(0.3)还是有差距的,在用户询问华中师范大学地址时,0.1 回答错误:

除了进行简单的对话外,还有人在保险相关领域进行了模型优化。据这位推特网友表示,借助 Alpaca-LoRA 项目,他输入了一些中文保险问答数据,最后效果也不错。

具体来说,作者训练中文版 Alpaca LoRa 用了 3K 多条中文问答保险语料,实现过程使用了 LoRa 方法,并微调 Alpaca 7B 模型,耗时 240 分钟,最终 Loss 0.87 。

图源:https://twitter.com/nash_su/status/1639273900222586882

以下是训练过程和结果:

测试结果表明:1. 训练语料相关内容都能有大概合理的回复,但仅限于不胡说 2. 非语料相关内容则会强行回复某个语料内的数据 3. 逻辑推理数学计算则没有这个能力。

看到这个结果后网友纷纷喊要失业了:

最后期待更多的中文对话模型加入进来。

参考链接:https://replicate.com/blog/fine-tune-alpaca-with-lora?continueFlag=4ecae39885197a5c008faabbefb5c824

好了,关于训练个中文版ChatGPT没那么难:不用A100,开源Alpaca-LoRA+RTX 4090就能搞定就讲到这。


返回科技金融网首页 >>

版权及免责声明:凡本网所属版权作品,转载时须获得授权并注明来源“科技金融网”,违者本网将保留追究其相关法律责任的权力。凡转载文章,不代表本网观点和立场,如有侵权,请联系我们删除。


相关文章